Automated Oil Palm Fruit Grading System using Artificial Intelligence

نویسندگان

  • Z. May
  • M. H. Amaran
چکیده

This project deals with the ripeness of oil palm fruit. The current procedure in the palm oil mills is grading the oil palm fruit manually using human graders. This method is subjective and inconsistence because each graders has its own techniques and may vary from each other’s. Hence, it affects the quality and quantity of the oil that can be extracted. In this project, a new model of automated grading system for oil palm fruit is developed using the RGB color model and artificial fuzzy logic. The purpose of this grading system is to distinguish between the three different classes of oil palm fruit which are underripe, ripe and overripe. The ripeness or color ripening index was based on different color intensity. The grading system uses a computer and a CCD camera to analyze and interpret images correspondent to human eye and mind. The computer program is developed for the image processing part like the segmentation of colors, the calculation of the mean color intensity based on RGB color model and the decision making process using fuzzy logic to train the data and make the classification for the oil palm fruit. The program developed has been able to distinguish the three different classes of oil palm fruit automatically with 86.67% of overall efficiency. This project provides a very good technique to standardize the oil palm fruit grading system over a large area and the research will continue to normalized the system to be able to use under different source of lighting. KeywordClassification, Grading, Color Model, Fuzzy Logic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photogrammetric Grading of Oil Palm Fresh Fruit Bunches

Conventional grading of oil palm Fresh Fruit Bunches (FFB) is still currently manually carried out in palm oil producing industries. The most critical part of the grading process is the categorization of the oil palm fruit bunches according to their ripeness. This paper presents a computer assisted photogrammetric methodology which correlates the color of the palm oil fruits to their ripeness a...

متن کامل

Intelligent Color Vision System for Ripeness Classification of Oil Palm Fresh Fruit Bunch

Ripeness classification of oil palm fresh fruit bunches (FFBs) during harvesting is important to ensure that they are harvested during optimum stage for maximum oil production. This paper presents the application of color vision for automated ripeness classification of oil palm FFB. Images of oil palm FFBs of type DxP Yangambi were collected and analyzed using digital image processing technique...

متن کامل

Dual Resonant Frequencies Effects on an Induction-Based Oil Palm Fruit Sensor

As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Mala...

متن کامل

Investigations on a Novel Inductive Concept Frequency Technique for the Grading of Oil Palm Fresh Fruit Bunches

From the Malaysian harvester's perspective, the determination of the ripeness of the oil palm (FFB) is a critical factor to maximize palm oil production. A preliminary study of a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunches is presented. To optimize the functionality of the sensor, the frequency characteristics of air coils of various diameters are investigated ...

متن کامل

The Use of Elimination Method and Nearest Neighbor for Oil Palm Fruit Ripeness Indicator

Fruit ripeness identification is hard to measure especially when it involves color as main indicator. Suitable color model must be chosen to determine the right color for the ripeness identification. Hue, Saturation and Value (HSV) are proved to be a better choice because it can define the color intensity. Besides, it also helps to choose colors which are similar to the eyes. Manual grading pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011